3D engine

Technical Documentation

Abstract

Lugdunum is an open-source 3D engine using the Vulkan API as a backend. Lugudunum'’s goal is to provide a
free, modern, cross-platform (mobile and desktop) 3D engine for everyone.

The team

- Corentin Chardeau
A 4
%@ Nicolas Comte
g Stuart Sulaski
, Yoann Picquenot

Guillaume-Heritiana Sabatié

ed {9 (D (D (@

Quentin Buathier

Guillaume Labey

Antoine Bolvy

Alexandre Quivy

Yoann Long

| _

-— |

Lugdunum Technical Documentation

3D engine

Document summary

This document is intended for every potential Lugdunum contributor, or for everyone wanting to know a bit
more about the internals of the project.

This document is split in two parts: the first is focused on Lugdunum, the 3D rendering engine, and on the
other hand, the second is focused on LugBench, the benchmarking product.

In the first part of the document you will find an overview of the Lugdunum project, and details about how we
interfaced with the Vulkan API.

Each section will be detailed with examples so that this document may be as simple and straightforward as
possible, for developers of all levels. It is however required that you have some background in 3D rendering,
and a working knowledge of your own system (git, CMake, etc.) as we will not cover the basics, that are usually
well documented on other documents and do not enter in the scope of this manual. When appropriate, useful
links and resources will be provided for your convenience.

The document ends with an information section, meant to answer the questions you could have after reading:
for example how to report bugs, how to contact us, and other useful links.

In summary, when you finish reading this first part, you should have a rough idea of how Lugdunum'’s source
code is architectured, and you should be able to read through the files without any problems. If anything bugs
you, please file an issue and we will be glad to answer any question you may have.

The second part of the document will present the architecture of the API, front-end and desktop application
of LugBench, the benchmarking software.

Document description

Title : Lugdunum Technical Documentation
Modificationdate : July 12,2017

Accountant : Yoann Long

E-mail . lugdunum_2018@labeip.epitech.eu
Subjet : Lugdunum - Technical Documentation
Document version : 2.0

lugdunum_technical.pdf July 12,2017

-— l

3D engine

Revisions table

Lugdunum Technical Documentation

Date Authors

Modified Section(s)

Comment(s)

2017-03-07 Antoine Bolvy

All Sections

Creation of the document

2017-03-10 Quentin Buathier,
Guillaume Labey,
Antoine Bolvy

Code Guidlelines and
Style

Added the guidelines

2017-03-11 Antoine Bolvy,
Yoann Long,
Guillaume Sabatié

Building Lugdunum

Added the instructions to build
Lugdunum for different platforms

2017-03-11 Guillaume Labey,
Quentin Buathier,
Antoine Bolvy

Architecture of
Lugdunum

Created the architecture section

2017-04-03 Antoine Bolvy

Architecture of

Fixed the missing sequence

Lugdunum diagrams
2017-05-07 Yoann Long, All Sections Second version of the Technical
Antoine Bolvy, documentation and added
Nicolas Comte, LugBench
Guillaume Labey,
Yoann Picquenot,
Corentin Chardeau,
Quentin Buathier
lugdunum_technical.pdf July 12,2017

lug

3D engine

Contents

Lugdunum Technical Documentation

1 Lugdunum 1
l. Architecture of Lugdunum 2
1. Renderer Architecture 2
2. Sequence diagrams 6
3. Vulkan Rendering 8
3.a. Global 8

3.b. Forward render technique 11

. Code Guidlelines and Style 14
1 Header files. 14
la. Self-contained Headers 15

1.b. Headers Guards 15

lc. Forward Declarations 15

1.d. Inline Functions 15

le. Names and Order of Includes 16

2. SCOPING . . 17
2.a. NamesSPaCes 17

2.b. Unnamed Namespaces and Static Variables 17

2.c Nonmember, Static Member and Global Functions 18

2.d. Local Variables 18

2.e. Static and Global Variables. 18

3. Classes ..o 18
3.a. Constructors. 18

3.b. Implicit conversions and User defined conversions 19

3.c Copyable and Movable Types 20

3.d. Structs vs. Classes 20

3.e. Inheritance and multiple Inheritance 20

3.f Interfaces 21

3.g. Operator Overloading 22

3.h. Declaration Order 22

4, Functions 22
4.a. Parameter Ordering 22

4.b. Write Short Functions 22

lugdunum_technical.pdf

July 12,2017

lug

Lugdunum Technical Documentation

3D engine
4.c. Reference Arguments 23
4d. Function Overloading 23
4.e. Default Arguments 23
4f. Trailing Return Type Syntax 23
5 Other .. 23
5.a. Ownership and Smart Pointers................ 23
6. Others C++ Features 24
6.a. Rvalue References 24
6.b. Friends 24
é.c. EXCeptions . .. 24
6.d. Run-Time Type Information (RTTI) 24
b.e. Casting 24
6.f. Streams 24
6.g. Preincrement and Predecrement 25
6.h. Useof const 25
é.i. Integer TYpesS 25
6.. Preprocessor Macros 25
6.k. Oand nullptr/NULL 25
6.l. SIZeOf . 25
6.m. AULO .o 26
6.n. Braced Initializer List 26
é.0. Lambda expressions 26
6.p. Template metaprogramming 26
6.q. std:hash 26
6.r. Gt 26
6.s. Nonstandard Extensions 27
7 NaMINg 27
7.a. File and Folder Names 27
7.b. Type NaMeS . . .o 27
7.c. Variable Names 27
7.d. Constant Names 28
7.e. Function Names 28
7f Namespace Names 28
7.8 Enumerator Names 28
7.h. Macro Names 29
8. CommeNts 29
8.a. Comment Style 29
8.b. Class Comments 29
8.c. Function Comments 30
8.d. Variable Comments 30
lugdunum_technical.pdf July 12,2017

2

m Lugdunum Technical Documentation

3D engine

8.e. Implementation Comments 31

8.f. Punctuation, Spellingand Grammar 31

8.g. TODO Comments 32

9. Formatting 32

9.a. Line Length 32

9.b. Non-ASCIl Characters 32

9.c. Spaces Vvs. Tabs 32

9.d. Function Declarations and Definitions 32

9.e. Lambda Expressions 33

9.f. Function Calls. 33

9.8. Braced Initializer List Format 33

9.h. Conditionals 34

9.i. Loops and Switch Statements 35

9.. Pointer and Reference Expressions 36

9.k. Boolean Expressions 36

9. ReturnValues. 36

9.m. Variable and Array Initialization. 36

9.n. Preprocessor Directives 37

9.0. Constructor Initializer Lists 37

9.p. Vertical Whitespace 38

10. CoNncluSIoN 38

I[1l. Contributing to Lugdunum 38
1. Branching strategy 38

IV. Testing architecture 41
1 Introduction 41

2. Howtoadd new tests. 41

3. Build tests 42

V. Contact Us .. 42
1 Github . 42

2. Mailing list 42
Lugbench 43
1. Homepage 44

2. Project architecture 44

2.a. Configuration 44

2.b. SOUICES ... 44

l. APldocumentation 44
1. List of endpoints 44

2. RESPONSE COABS 44

[. Unit tests . . 45

lugdunum_technical.pdf July 12,2017

V

_—

—

Lugdunum Technical Documentation

|

3D engine

Part. 1

Lugdunum

Contents

Architecture of Lugdunum 2
1. Renderer Architecture 2
2. Sequence diagrams 6
3. Vulkan Rendering 8
Code Guidlelines and Style 14
1 Header files. 14
2. SCOPING .. 17
3. ClasseS . . 18
4, Functions 22
5. Other . 23
6. Others C++ Features 24
7. NaMINg 27
8. CommeENts . .. 29
9. Formatting 32
10. Conclusion 38
Contributing to Lugdunum 38
1. Branching strategy 38
Testing architecture 41
1. Introduction 41
2. Howtoadd new tests.... 41
3. Build tests 42

lugdunum_technical.pdf July 12,2017

m Lugdunum Technical Documentation

3D engine

V. Contact US .. 42
1. GithUb . 42
2. Mailing list . .. o 42

lugdunum_technical.pdf July 12,2017 2

1

2

3

4

5

10

11

12

13

14

15

16

17

18

Lugdunum Technical Documentation

- l

3D engine

I. Architecture of Lugdunum

The purpose of this section is to introduce you to the internal operation of our 3D engine. We will first talk
about the architecture of the renderer. Then we will describe the sequencing of the engine graphic’s loop, how
each component of the Renderer: :Target is interacting with the Render: :Window composed of different
Renderer: :View. Then, we will discuss the GPU & CPU's side operation. We will explain how each buffer is
loaded and used by our engine.

1. Renderer Architecture

We decided to be as APl independent as possible, i.e. we do not want to be too much dependent on Vulkan
itself. This is why we created abstract classes for each type and their Vulkan-equivalent in a separate, API
specific directory. This is especially visible in Figure 1.1. Hypothetically speaking, this allows us to be much
less dependent on this technology and maybe one day, to derive the implementation for another low-level
API, such as D3D12 for example.

The main object of the renderer is the Render: :Target. ARender: :Target is any surface on which we can
render, e.g. a window or an offscreen image.

ARender: :Target can have multiple Render: : Views, each representing a fraction of the Render: : Target,
defined by a Render: :View: :Viewport and a Render: :Scissor defined as following:

class Viewport {
public:
struct {
float x;
float y;
} offset;

struct {
float width;
float height;
} extent;

float minDepth;
float maxDepth;

inline float getRatio() const;

+

struct Scissor {
struct {
float x;
float y;

lugdunum_technical.pdf July 12,2017 3

https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Renderer_1_1Target.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Window.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Renderer_1_1View.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Target.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Target.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Target.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1View.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Target.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1View_1_1Viewport.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Scissor.html

' ‘ Lugdunum Technical Documentation

3D engine

23 } offset;

24

25 struct {

26 float width;
27 float height;
28 } extent;

29 };

Each of the components of Render: :View: :Viewport and Render: :View: :Scissor are defined as per-
centage values (i.e. a float between 0.0 an 1.0), so it has the same appearance on every size of the Render: :
Target.

A unique Render: : Camera can be attached to a single Render: : View, i.e. we cannot have aRender: :Camera
attached to two different Render: : Views.

Render: :Cameras contain a Render: : Queue and have pointer to a Scene: : Scene, which is created by the
user, and can be attached to multiple cameras.

Every frame, the Render: : Queue is cleared, then filled by the Scene: : Scene with the objects visible by the
Render: :Camera’s frustrum.

The Render: :Queue is finally sent to Vulkan: :Render: :Technique: :Technique: :render().

lugdunum_technical.pdf July 12,2017 4

https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1View_1_1Viewport.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1View_1_1Scissor.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Target.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Target.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Camera.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1View.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Camera.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1View.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Camera.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Queue.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Scene_1_1Scene.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Queue.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Scene_1_1Scene.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Camera.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Queue.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1Technique_1_1Technique.html

Lugdunum Technical Documentation

-— |

3D engine
Graphics
Render::Target
Vulkan
| Render::Window |<—| Render:Window

T

1

1

|

Render::View ||= Render::View

1 1

1 1

| |

Y Y
Crame [e . » Render::Technique

il Render::Camera |<—| Render::Camera | “Technique |

LY
1 .
1
|
Y
. B - f - Render::Technique Render::Technique

| Scene::SceneNode | Render::Queue | Scene::MovableObject Scene::MovableCamera | RO | B errerer]
T
. !
Scene::Meshinstance Light:Light |

Render::Mesh ||= Render::Mesh

Figure 1.1: Main classes of the renderer

In the diagram Figure 1.1, we are representing the main classes of the renderer and their dependencies.

e Plain line (—>): Inheritance
e Dashed line (- - - >): Contains an instance of the class with ownership
e Dotted line (- - - >): Contains an instance of the class without ownership

lugdunum_technical.pdf July 12,2017 5

Lugdunum Technical Documentation

- l

3D engine

The diagram Figure 1.2 shows an example of how classes interact with each other:

e Here we have one Render: : Target, which contains three Render: : Views:
- The render view A

- The render view B
- The render view C, which is disabled, as each one of these can be enabled and disabled as wished.

e Both render views A and B each have a camera, and each camera has its own render queue.
e Cameras are also linked to a scene, and scenes are linked to each camera’s render queues.
e In this particular case, it appears that we have only one scene, so each camera points to the same scene,

and the scene points to two render queues.

Render::Target

A/ A/ Render::View C
Render::View A Render::View B (disabled)
Y Y
Render::Camera A Render::Camera B
Render::Queue A Render::Queue B
Scene
Render::Queue A Render::Queue B

Figure 1.2: Example of a possible usage of the render views

lugdunum_technical.pdf July 12,2017 6

https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Target.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1View.html

V ‘ Lugdunum Technical Documentation

3D engine

2. Sequence diagrams

In this section will be presented the rendering of a single frame with the help of two sequence diagrams,
Figure 1.3 and Figure 1.4. The second is a subset of the first, as they have been separated to ease readability.

UserApplication Application Renderer RenderWindow RenderTarget
run() J
loop [mainLoop]
loop [while there is an event]
pollEvent()
R [
onEvent(Event)
| 1
beginFrame()
beginFrame()
Get the next
image
e emmmmm e
| e e e
onFrame()
e
Update the logic
|)
endFrame()
loop [for all render targets to draw]
render()
__ 1
Render the target
(detailed in an
other diagram)
I N 1
endFrame()
Present the image
e e e e
P PP -
R T T T
UserApplication Application Renderer RenderWindow RenderTarget

Figure 1.3: Rendering of a frame (part. 1)

Let us describe this sequence diagram, step by step:

lugdunum_technical.pdf July 12,2017 7

-

N

10

11

12

13

V ‘ Lugdunum Technical Documentation

3D engine

First, UserApplication is the user-defined class that inherits from Lug: :Core: : Application and defines
the methods onEvent and onFrame. Application::run() is called (and must be) by the user like in this
example:

int main(int argc, char* argv[]) {
UserApplication app;

if (lapp.init(argc, argv)) {
return EXIT FAILURE;

if (lapp.run()) {
return EXIT_FAILURE;

return EXIT_SUCCESS;

The method Core: :Application::run() is the main loop of the engine which polls the events from the
window and renders everything correctly. As expected, we can see that the Core: :Application is polling
all the events from the Render: :Window and sending them to the UserApplication through the method
UserApplication::onEvent(const lug::Window: :Event& event).

Then, Core: :Application is calling the method Renderer: :beginFrame() which call itself the method
Render: :Window: :beginFrame() to notify the Render: :Window that we are starting a new frame.

Finally, the user can update the logic of their application in the method UserApplication::onFrame(const
lug::System: : Time& elapsedTime).

At the end of the frame, the method Renderer: :endFrame() is called and will call the method Render: :
Target::render() for all Render: : Target to draw and will finish the frame by calling the method Render
::Window: :endFrame () to notify the Render: :Window that we are ending this frame.

lugdunum_technical.pdf July 12,2017 8

https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Core_1_1Application.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Core_1_1Application.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Core_1_1Application.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Core_1_1Application.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Window.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Core_1_1Application.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Core_1_1Application.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Renderer.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Window.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Window.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Core_1_1Application.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Core_1_1Application.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Renderer.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Target.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Target.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Target.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Window.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Window.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Window.html

' —

Lugdunum Technical Documentation

3D engine
RenderTarget RenderView Camera Scene RenderTechnique
| | |
loop [for all render|views to draw]
render()
update(RenderView)
fetchVisibleObjects(RenderView, Camera, RenderQueue)
Store the visible
object in the
RenderQueue
= e
| e o e et |
render(RenderQueue)
Actual rendering
e S A
R L e TR TP PP ol
RenderTarget RenderView Camera Scene RenderTechnique

Figure 1.4: Rendering of a frame (part. 2)

In the method Render: :Target: :render(), the Render: :Target is calling the method Render: :View: :
render () for each enabled Render: :View.

To be rendered, Render: :View needs to update its Render: : Camera which will fetch all the elements in its
Render: :Queue from the scene with Scene: : fetchVisibleObjects().

So the Render: :Queue will contain every elements needed to render the Scene: : Scene, meshes, models,

lights, etc.

Then the Render: :View can call the render technique to draw the the elements in the Render: :Queue
(e.g. for Vulkan a class inheriting from Vulkan: :Render: :Technique: : Technique).

3. Vulkan Rendering
3.a. Global

GPU Side

The Vulkan: :Render: :Window and the Vulkan: :Render: :Views of Lugdunum are pretty straightforward.
For simplicity’s sake we have split this process into five steps:

lugdunum_technical.pdf July 12,2017 9

https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Target.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Target.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1View.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1View.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1View.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1View.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Camera.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Queue.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Scene_1_1Scene.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Queue.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Scene_1_1Scene.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1View.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Queue.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1Technique_1_1Technique.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1Window.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1View.html

| _

- l

Lugdunum Technical Documentation

3D engine

RenderWindow

1 | Getthe next image from the swapchain

2 | Change layout to VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

RenderView 2 RenderView | RenderView N

3 | Drawing command buffer 3 | Drawing command buffer 3 | Drawing command buffer

4 | Change layout to VK_IMAGE_LAYOUT_PRESENT_SRC_KHR

5 | Present the image

Figure 1.5: Swapchain image acquisition and synchronization

Each arrow represents a Vulkan semaphore for synchronization purpose.

We get an available image from the swapchain

We change the layout of this image to VK_IMAGE LAYOUT COLOR_ATTACHMENT OPTIMAL
We render each Vulkan: :Render: :View in parallel

We change the layout of this image to VK_IMAGE LAYOUT PRESENT SRC KHR

We add the image to the presentation queue of the swapchain.

vk N pe

For steps 2 and 4 we are using one Vulkan command buffer per image in the swapchain. Each of the command
buffers are built beforehand, therefore we don’t need to rebuild them each frame.
Step 3 is dependent on the render technique used.

CPU Side

Since our semaphores are stored in a pool, we let each method (beginFrame(), endFrame(),...) select their

own semaphore(s) to use.

lugdunum_technical.pdf July 12,2017 10

https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1View.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1Window.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1Window.html

V ‘ Lugdunum Technical Documentation

—

3D engine

Steps 1& 2

The method Vulkan: :Render: :Window: :beginFrame () is used to accomplish steps 1 and 2. This method
chooses one semaphore to be notified when the next image is available and chooses N semaphores to notify
each Vulkan: :Render: :View when the image has changed layout. (N being the number of Vulkan: :Render
: :Viewin the Vulkan: :Render: :Window)

Step 3

The method Vulkan: :Render: :Window: : render () is used to accomplish step 3. This method uses the N
previous semaphores, one for each call to Vulkan: :Render: :View: : render (). Each Vulkan: :Render::
View has a semaphore which is signaled when the view has finished rendering. We will explain how the render
technique works in the next part.

Steps4 &5

The method Vulkan: :Render: :Window: :endFrame() is used to accomplish steps 4 and 5. This method
retrieves all the semaphores from the Vulkan: :Render: :View and chooses one semaphore to be notified
when the image has changed layout.

lugdunum_technical.pdf July 12,2017 11

https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1Window.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1View.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1View.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1View.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1Window.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1Window.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1View.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1View.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1View.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1Window.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1View.html

m Lugdunum Technical Documentation

3D engine

3.b. Forward render technique

GPU Side

Forward Technique

Figure 1.6: Forward technique

The Vulkan: :Render: :Technique: :Forward has two different Vulkan: :Render: :Queue, i.e. one transfer
and one graphics.

The transfer Render: : Queue is responsible for updating the data of the Render: : Cameraand Light: :Light
s, each of which is contained in a uniform buffer Vulkan: :API: :Buffer which is sent through different
Vulkan: :API::CommandBuffers (i.e. “Command buffer A’ and “Command buffer B” in the above schema).
These Vulkan: :API::CommandBuffers are then sent to the transfer Render: : Queue.

Here is the structure of the uniform buffers for the camera and the lights:

// Camera

layout(set = 0, binding = 0) uniform cameraUniform {
matd4 view;
mat4 proj;

I ¢

lugdunum_technical.pdf July 12,2017 12

https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1Technique_1_1Forward.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1Queue.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Queue.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Camera.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Light_1_1Light.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Light_1_1Light.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1API_1_1Buffer.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1API_1_1CommandBuffer.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1API_1_1CommandBuffer.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Queue.html

Lugdunum Technical Documentation

— |

3D engine

7 // Directional light

s layout(set = 1, binding = 0) uniform lightUniform {
9 vec3 lightAmbient;

10 vec3 lightDiffuse;

11 vec3 lightSpecular;

12 vec3 lightDirection;

13 };

14

.
o

// Point light
¢ layout(set = 1, binding = 0) uniform lightUniform {

-

17 vec3 lightAmbient;
18 float lightConstant;
19 vec3 lightDiffuse;
20 float lightlLinear;
21 vec3 lightSpecular;
22 float lightQuadric;
23 vec3 lightPos;

2 };

25

¢ // Spot light
layout(set = 1, binding = 0) uniform lightUniform {

N

N
~N

28 vec3 lightAmbient;

29 vec3 lightDiffuse;

30 vec3 lightSpecular;

a1 float lightAngle;

32 vec3 lightPosition;

33 float lightOuterAngle;
34 vec3 lightDirection;
3 };

Each type of light has a different pipeline using different fragment shaders (That’s why all the light uniforms
are using the same binding point in the above code sample).

To pass the transformation matrix of the objects we are using pushconstant:

1 layout (push_constant) uniform blockPushConstants {
2 mat4 modelTransform;
3 } pushConstants;

The graphics Render: : Queue is responsible for all the rendering.

The “Command buffer C” for the drawing depends on the two command buffers of transfer by means of
semaphores at different stages of the pipeline, VK PIPELINE STAGE VERTEX INPUT BIT for the camera

lugdunum_technical.pdf July 12,2017 13

https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Render_1_1Queue.html

-

IS

w

r Lugdunum Technical Documentation

e,

3D engine
and VK_PIPELINE STAGE FRAGMENT SHADER BIT for the lights.

CPU Side
Buffer Pool

The allocation of the uniform buffers is managed by a Vulkan: :Render: :BufferPool, one for the camera
and one for the lights.

As we do not want to perform lots of allocations, we mitigate this using the pool which will allocate a rela-
tively large chunk of memory on the GPU, that will itself contain many Vulkan: :Render: :BufferPool::
SubBuffers.

AVulkan::Render::BufferPool: :SubBuffer isa portion of a bigger Vulkan: : API: :Buffer that can be
allocated and freed from the pool and bind with a command buffer without worrying about the rest of the
Vulkan: :API: :Buffer.

Triple buffering

Because we are using triple buffering, we need a way to store data for a specific image. For that we have
Vulkan: :Render: :Technique: :Forward: :FrameData that contains all we need to render one specific
frame (command buffers, depth buffer, etc.). To avoid using a command buffer already in use, we are synchro-
nizing their access with a fence.

To share Vulkan: :Render: :BufferPool: :SubBuffer across frames, e.g. if the camera does not move, we
have a way to reuse the same Vulkan: :Render: :BufferPool::SubBuffer. We associate the Vulkan: :
Render: :BufferPool::SubBuffer with the object (camera or light), and test at the beginning of the frame
if we can use a previous one (if the object has not changed from the update of this Vulkan: :Render::
BufferPool: :SubBuffer).

If it is not possible to use a previously allocated buffer we are allocating a new one from the Vulkan: :Render
::BufferPool.

Drawing Command Buffer

Here is the pseudo code that we are using to build the command buffer of drawing:

BeginCommandBuffer
The viewport and scissor are provided by the render view

SetViewport
SetScissor

lugdunum_technical.pdf July 12,2017 14

https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1BufferPool.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1BufferPool_1_1SubBuffer.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1BufferPool_1_1SubBuffer.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1BufferPool_1_1SubBuffer.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1API_1_1Buffer.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1API_1_1Buffer.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1Technique_1_1Forward_1_1FrameData.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1BufferPool_1_1SubBuffer.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1BufferPool_1_1SubBuffer.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1BufferPool_1_1SubBuffer.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1BufferPool_1_1SubBuffer.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1BufferPool_1_1SubBuffer.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1BufferPool_1_1SubBuffer.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1BufferPool.html
https://lugdunum3d.github.io/doc/doxygen/classlug_1_1Graphics_1_1Vulkan_1_1Render_1_1BufferPool.html

Lugdunum Technical Documentation

3D engine

7 BeginRenderPass

8

9 # We can bind the uniform buffer of the camera early
10 # It is the same everywhere

11 BindDescriptorSet(Camera)

12

13 # ALl the lights influencing the rendering (visible to the screen)
14 Foreach Light

15 # Each type of Light has a different pipeline

16 BindPipeline(Light)

17

18 # We can bind the uniform buffer of the light

19 BindDescriptorSet(Light)

20

21 # ALl the objects influenced by the light

22 Foreach Object

23 # Push the transformation matrix of the Object
24 PushConstant(Object)

25

26 # We use indexed draw, so we need to bind

27 # the index and the vertex buffer of the object
28 BindVertexBuffer(0Object)

29 BindIndexBuffer(Object)

30

31 DrawIndexed(Object)

32 EndForeach

33 EndForeach

34

35 EndRenderPass
36

37 EndCommandBuffer

Il. Code Guidlelines and Style

1. Header files

Each . cpp file should have an associated . hpp file.
Place the definitions for templates and inline functions in separated . in1 files, alongside the corresponding
header file in which it is included.

If applicable, include the . in1 file inside the namespaces of the header file, as to not repeat these namespace
in the inline file and include it at the end of the header file, just before the namespaces’ closing brackets.

lugdunum_technical.pdf July 12,2017 15

-

[N

w

o

~

©

10

11

12

13

14

15

16

17

| _

- l

Lugdunum Technical Documentation

3D engine

1.a. Self-contained Headers

Header should be “self-contained”, i.e. they must include all their dependencies, and the user should not have
to worry about them.

1.b. Headers Guards

To protect headers against double inclusion, headers must start with:

#pragma once

1.c. Forward Declarations

Preferably avoid forward declarations when possible, include the necessary files when possible, but do not
feel restrained by this rule.

1.d. Inline Functions

Inline functions should be implemented in .in1 files.
Simple getters and setters should be inlined, as well as other short functions (usually less than 10 lines).

Typically, do not inline functions with loops, switch statements and others (unless if, in the common case, the
loop or switch statement is never executed), as in this case, inlining the function might not be cost-effective.

Example:

lug/System/Logger/Logger.hpp:

#pragma once

7/ oac

namespace lug {
namespace System {

namespace Logger {

class LUG _SYSTEM API Logger {
N cac

template<typename T, typename... Args>
void debug(const T& fmt, Args&&... args);

// ...
35

lugdunum_technical.pdf July 12,2017 16

18

19

20

21

22

[N

w

IS

w

©

©

10

Lugdunum Technical Documentation

- l

3D engine

#include <lug/System/Logger/Logger.inl>

} // Logger
} // System
} // lug

Corresponding inline file in lug/System/Logger/Logger.inl:

// No namespace opened here
template<typename T, typename... Args>

inline void Logger::debug(const T& fmt, Args&&... args) {
/] ...

// No namespace closed here either

1.e. Names and Order of Includes
Inclusion should happen in this order, each section separated by a new line and sorted in alphabetic order:

Related header (in a . cpp file, this is the corresponding . hpp header)
C library headers

C++ library headers

Other libraries’ headers

vk Wi pe

Project headers

All of a project’s header files should be listed as descendants of the project’s source directory without use of
UNIX directory shortcuts . (the current directory) or .. (the parent directory).

These headers should be included as “system” headers, with angle brackets instead of double quotes, because
it looks better in our opinion. Deal with it ;)

Example:

#include <lug/System/Logger/Logger.hpp>

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

#include <memory>

#include <set>
#include <string>

lugdunum_technical.pdf July 12,2017 17

i

1

12

-

3

N

4

-

N

w

10

11

| _

-— |

Lugdunum Technical Documentation
3D engine
#include <vulkan.h>

#include <lug/System/Logger/Handler.hpp>
#include <lug/System/Logger/Message.hpp>

You should include all the headers that define the symbols you rely upon, except in the unusual case of forward
declaration. If you rely on symbols from bar. hpp, don’t rely on the fact that you included foo.hpp which
(currently) includes bar. hpp: include bar. hpp yourself, unless foo . hpp explicitly demonstrates its intent to
provide you the symbols of bar.hpp. However, any includes present in the related header do not need to be
included again in the related . cpp (i.e., foo.cpp can rely on foo. hpp’s includes).

2. Scoping
2.a. Namespaces

All namespaces should be terminated by a comment after the end bracket specifying the name of the corre-
sponding namespace. A namespace doesn’t imply another level of indentation, see below for an example.

Namespaces should be used also in the . cpp files to avoid repetition.

Example:

namespace lug {
namespace System {

namespace Logger {

class Logger {
77 ooc
}i

} // Logger
} // System
} // lug

Do not declare anything in the namespace std, and do not use inline namespace, except for very, very specific
use-cases.

using-directive and namespace-aliases are prohibited in header files, only use them in . cpp files or in some
particular cases in internal-only namespaces.
2.b. Unnamed Namespaces and Static Variables

Use of static variables and unnamed namespaces is encouraged in . cpp files for all code that does not need
to be referenced elsewhere. Do not use that in header files.

lugdunum_technical.pdf July 12,2017 18

©

10

11

12

13

’ __
- l

3D engine

2.c. Nonmember, Static Member and Global Functions

Lugdunum Technical Documentation

Do not use global functions, always put them in a namespace. Do not use class as a namespace for some

functions, use a namespace for that.

Static methods should generally be closely related to instances of the class or the class’s static data.

2.d. Local Variables

Do not separate variable declaration from its initialization.

int x = 40; // Good
int y;

y = 2; // Bad (initialization separated from declaration)

Declare variables in the lowerest scope and as close as possible of the first use.

2.e. Static and Global Variables

Prefer POD (plain old data) when using static and global variables (except some very particular cases, one

example would be the global Logger object, which is a static member of lug::System::Logger::Logger).

Preferably, do not use static and global variables at all.

3. Classes
3.a. Constructors

Where applicable, initialize members in the class definition (in the . hpp file).

Example:

/] oo

namespace lug {
namespace Graphics {

/) oo

class LUG_GRAPHICS API Camera : public Node {
7l ooc

protected:

Scene* scene{nullptr};
RenderQueue renderQueue;

lugdunum_technical.pdf July 12,2017

19

Lugdunum Technical Documentation

- l

3D engine

14 RenderView* renderView{nullptr};

15

16 float fov{45.0f};

17 float near{0.1f};

18 float far{100.0f};

19

o private:

21 // P

22

23 Math::Mat4x4f projMatrix{Math::Mat4x4f::identity()};
24 Math: :Mat4x4f viewMatrix{Math::Mat4x4f::identity()};

N}

25

26 bool needUpdateProj{true};
27 bool needUpdateView{true};
28 };

29

0 } // Graphics

st} // lug

3.b. Implicit conversions and User defined conversions

Do not define implicit conversions, use the explicit keyword for conversion operators and single-argument-

constructors.

Even with the explicit keyword, only use user defined conversions when it’s meaningfull in some particular
cases. In Lugdunum, we use them to convert types from our Vulkan abstraction to native Vulkan types.

Example:

1 // ...
3 namespace lug {
4 namespace Graphics {

s namespace Vulkan {

7 class Device {

s public:

9 // ...

10

11 explicit operator VkDevice() const {
12 //

13 }

14

15 // ...

lugdunum_technical.pdf July 12,2017 20

Lugdunum Technical Documentation

- l

3D engine

16 };

17

18 } // Vulkan
19 } // Graphics
20 } // lug

3.c. Copyable and Movable Types

All classes should define a default move and copy constructor and a default move and copy assignment
operator using = default. If the move/copy operations are not useful for your class, you should disable them
with = delete.

namespace lug {

-

namespace Graphics {

N

w

namespace Vulkan {

class LUG_GRAPHICS API Camera final : public lug::Graphics::Camera {

5}

6 public:

7 Camera(const std::string& name);

8

9 Camera(const Camera&) = delete;

10 Camera(Camera&d&) = default;

11

12 Camera& operator=(const Camera&) = delete;
13 Camera& operator=(Camera&&) = default;

14 };

15

16 } // Vulkan
17 } // Graphics
18 } // lug

3.d. Structsvs. Classes
struct are only for passing “inactive” data or Plain Old Data. They don’t have constructors, destructors,
functions. Everything else is a class.

3.e. Inheritance and multiple Inheritance

All methods should be private, except for methods that need to be accessed in subclasses which have to be
protected.

When a method need to be override, define it as virtual in the base class and use the key word override.

If no class inherited from the sublclass override the method, the key word final must be used. The key word

lugdunum_technical.pdf July 12,2017 21

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

V ‘ Lugdunum Technical Documentation

3D engine

final must also be used for the inheritance itself, if no class inherit from the subclass.
Make your base class destructor virtual;

namespace lug {
namespace Graphics {

class LUG_GRAPHICS API Light : public MovableObject {
public:
virtual ~Light();
virtual void* getData(uint32 t& size) = 0;
// Virtual destructor and method because overridden in PointLight

// ...
J 5

class LUG_GRAPHICS API PointLight final : public Light {
// Use final here because no class inherit from PointLight

public:
~PointLight() override final;
void* getData(uint32 t& size) override final;
// Use final here because no subclass of PointLight will override getData() or the
destructor

// Also use override to overide getData and Light destructor

// ...
Y5

} // Graphics
} // lug

Multiple inheritance is discouraged and is only allowed if all base classes are interfaces or if the base classes
are abstract classes (but discouraged). The diamond inheritance is disallowed.
3.f. Interfaces

All methods must be pure virtual (ends with = 0).
The interface must declare a virtual destructor.

class Foo {

public:
virtual ~Foo() = default;
// virtual destructor

lugdunum_technical.pdf July 12,2017 22

| _

-— |

Lugdunum Technical Documentation

3D engine

6 virtual method() = 0;
7 // Pure virtual method

3.g. Operator Overloading

Do not abuse of operator overloading, only use them if their meaning is obvious.

The operators should be defined in the same namespace and class as the type it overloads, except from
the binary operators (taking two parameters) that is encouraged to be declared in a non-member function
(however in the same namespace as the class)

3.h. Declaration Order

The declaration order in a class should be public:, followed by protected:, then private:. The methods
and data members should have different blocks.

Each declaration block should be separated with a blank line. It's encouraged to separated with a blank line
inside the blocks too for each methods/properties that can be grouped.

In each declaration block, the order in the following:

o Using declarations, typedefs and enums
e Constants (static const)

e Constuctors and assignment operators
e Destructors

e Methods, including static methods

e Data properties

4. Functions
4.a. Parameter Ordering

When a function takes inputs and outputs (i.e. an output pointer), it should list inputs first, then outputs.

Inputs are usually values or const references, whereas inputs and input/output should be pointers to non-const
variables.
4.b. Write Short Functions

It seems obvious, but prefer dividing large functions in “atomic” functions, dedicated to one specific task. As a
rule of thumb, a function is considered as large when it has more than 50 lines.

Short functions improve code maintainability and readability.

lugdunum_technical.pdf July 12,2017 23

-

i

-

| _

-— |

Lugdunum Technical Documentation

3D engine

4.c. Reference Arguments
All parameters passed by reference must be labeled const.

Example:

void foo(const string &in, std::string *out);

If you want to pass a null-able value as a parameter, you can use a raw pointer instead.

4.d. Function Overloading
Function overloading can add complexity to the code and make it less readable. You can use function overlading
but ask yourself first if there is not a better, more readable option available.

4.e. Default Arguments

Default arguments are allowed on non-virtual functions when the default is guaranteed to always have the
same value accross possible overloaded functions. For the same reasons detailed function overloading, be
careful when using default arguments.

4.f. Trailing Return Type Syntax

C++11 introduced a new syntax for function return types.

Old:

int foo(int x);

New (C++11 only):

auto foo(int x) -> int;

The difference is that in the new syntax, the type is declared in the function’s scope.

Do continue to use the older style of function declaration where the return type goes before the function
name. Use the new trailing-return-type form only in cases where it’s required (such as lambdas).

5. Other

5.a. Ownership and Smart Pointers

Object ownership is represented by a std: :unique ptrorastd::shared ptr,ak.a. smart pointers. Con-
sider that you never have ownership on raw pointers, so you must never free or delete a raw pointer.

Do not use shared ownership without a very good reason to back it up.

Never use std: :auto_ptr. Instead, use std: :unique ptr.

lugdunum_technical.pdf July 12,2017 24

| _

- l

Lugdunum Technical Documentation

3D engine

6. Others C++ Features

6.a. Rvalue References

Use rvalues only in constructors and movement operators/constructors, or to do perfect forwarding (with
std: :forward).

6.b. Friends

Use of friend is not strictly forbidden but you should avoid it as possible. You can use friend if it allows to
remove a public access that is only used by the friended class.

Friends should be defined in the same file as much as possible.

6.c. Exceptions

Use exceptions sparsely, only when another option such as return status/code or asserts is not available.

6.d. Run-Time Type Information (RTTI)
Avoid over using Run Time Type Information (RTTI).

Using the type of an object at run-time is in general a problem of architecture. And it’s also hard to maintain
if you have decision trees or switch statements scattered throughout the code which all need to be updated
when making changes.

6.e. Casting
Even if the C++-style cast syntax (with static cast<>) is more verbose, always use it over old C-style casts.

e Use brace initialization to convert arithmetic types (e.g. int64{x}). This is the safest approach because
code will not compile if conversion can result in information loss. The syntax is also concise.

e Use static cast as the equivalent of a C-style cast that does value conversion, when you need to
explicitly up-cast a pointer from a class to its superclass, or when you need to explicitly cast a pointer
from a superclass to a subclass. In this last case, you must be sure your object is actually an instance of
the subclass.

e Use const_cast to remove the const qualifier, avoid using it too frequently.

e Use reinterpret cast to do unsafe conversions of pointer types to and from integer and other
pointer types. Use this only if you know what you are doing and you understand the aliasing issues.

6.f. Streams

Use streams only when they actually are the best tool for the job. Stream formatting and performance is not
that good so think of the available alternatives when using streams.

lugdunum_technical.pdf July 12,2017 25

| _

- l

Lugdunum Technical Documentation

3D engine

Do not use std: :cout or std: :cerr for logging purpose, use System: :Logger: :Logger instead, which
supports custom types, and other useful features such as easy-to-use formatting and cross-platform handler-
s/sinks.

Overload << as a streaming operator for your type only if it represents a value and writes a human readable
representation of that value. Do not expose implementation details in the output of <<. Such overloaded
types are de-facto supported by Lugdunum’s logger.

6.g. Preincrement and Predecrement

Always use the prefixed form.

6.h. Use of const

Always use const where applicable, and use constexpr when you are defining true constants, i.e. fixed at
compile time. When writing code, put the const keyword before the type:

const int* foo;

6.i. Integer Types

Always use fixed-size integer types from <cstdint>such as int32 t,int16 t,uint32 t, etc. instead of
unsigned, long, unsigned int, etc.

When applicable, always use size t or ptrdiff t to hint at the actual purpose of the variable.

6.j. Preprocessor Macros
Avoid preprocessor macros, prefer constexpr values, inline functions, or even lambdas.

X'macros are a special case and are not as much discouraged, but do weigh the advantages of the code lightness
versus the readability disadvantage induced by X macros. X macros are very hard to read for inexperienced
programmers, can quickly become too complicated and can really hurt the maintanability of the codebase. Be
smart, and keep them simple!

6.k. 0and nullptr/NULL

Use 0 for integers, 0.0 for reals, nullptr (do not use NULL) for pointers, and '\0"’ for chars.

6.. sizeof
Prefer sizeof(varname) to sizeof (type) as it improves code maintainability.

Example:

lugdunum_technical.pdf July 12,2017 26

https://lugdunum3d.github.io/doc/doxygen/classlug_1_1System_1_1Logger_1_1Logger.html

| _

- l

Lugdunum Technical Documentation

3D engine

1 SomeType data;
2 memset(&data, 0, sizeof(data)); // Good
3 memset(&data, 0, sizeof(SomeType)); // Bad

6.m. auto

Use auto to avoid type names that are noisy, obvious, or unimportant - cases where the type doesn’t aid in
clarity for the reader. Continue to use manifest type declarations when it helps readability. However, do not
use a auto variable with initializer lists.

Only use auto on local variables.

6.n. Braced Initializer List

Prefer using Braced Initializer List where possible.

6.0. Lambda expressions
Use lambda expressions when appropriate, e.g. to pass a short comparaison function to an std algorithm.

Always use explicit captures by specifying which variables do you want, and make sure that the lifetime of the
variable is longer than the lifetime of the lambda when capturing by reference or capturing a pointer.

Keep unnamed lambdas short and without a lot of captures.

Specify the return type of the lambda explicitly only when it is not obvious to the readers.

6.p. Template metaprogramming

Think twice before using template metaprogramming, prefer a simpler technique if possible.

6.q. std::hash

Do not define specializations of std: : hash, as writing hash functions is difficult and error-prone, even for
experts. Due to the high risk of ending up with a broken hash function, it has been decided to forbid specializing
std: :hash for your types.

6.r. C++14

Always use C++14 libraries and features if possible, but keep it compatible with all the project supported
compilers.

lugdunum_technical.pdf July 12,2017 27

10

11

12

Lugdunum Technical Documentation

— |

3D engine

6.s. Nonstandard Extensions

Only use standard extensions, exeptionnally where at least widely used and available on all the project
supported compilers. Be smart and don’t introduce non-maintainable code in the codebase ;)

7. Naming
7.a. File and Folder Names

File names must match the class defined inside and the file must be placed in a directory structure matching
the namespace for the class.

Therefore, filenames should be in UpperCamelCase and shoud not contain separators such as spaces, dashes
or underscores.

Header files must head with the . hpp extension, inline header files must hend with .in1l and must be placed
alongside the classic header files, and finally, source files must end with the . cpp extension.

Source files must be placed in the . /src/ folder, whereas header and inline source files must be located in
the ./include/ folder.

Example: Foo: :Bar: :MyClass should have the following directory structure:

|
|
| | +-- Bar
| | |-- MyClass.hpp
| | +-- MyClass.inl
| +-- ...
+--include

|-- Foo

| +-- Bar

| +-- MyClass.cpp

PSS noa

7.b. Type Names

Type names should be in UpperCamelCase (with no underscores): MyClass.

This applies for classes, structs, type aliases, enums and type template parameters.
7.c. Variable Names

Variable names should be in lowerCamelCase (with no underscores): myVariable.

Private and protected class members should start with an underscore.

lugdunum_technical.pdf July 12,2017 28

Lugdunum Technical Documentation

- l

3D engine

Example:

1 class Foo {
3 public:
4 int barPublic;

¢ protected;

7 int barProtected;
8

9 private:

10 int barPrivate;
1}

7.d. Constant Names

Refer to Variable Names above.

7.e. Function Names

Function names shoul be written the same way as variable names, in lowerCamelCase, with no underscores:
myFunction().

When there is an acronym, it should be capitalized: write sendUDP (), not sendUdp ().

7.f. Namespace Names

Nested namespaces should be in UpperCamelCase and the top-level namespace should be in lowerCamelCase,
with no underscores, e.g.: lug: :Graphics.

Do not use nested namespaces that would match top-level namespaces:

1 namespace lug {
2 namespace std { // Bad
3 // ...

7.8. Enumerator Names

Refer to Variable Names above.

lugdunum_technical.pdf July 12,2017 29

1

2

” —=

e,

3D engine

7.h. Macro Names

Lugdunum Technical Documentation

Macro names should be written in upper case with underscore between words: MY MACRO.

Keep in mind that macros are not recommanded (See Preprocessor Macros).

8. Comments

8.a. Comment Style

Use // for single-line comments and /* */ for multiline comments outside of function blocks. Small blocks

of multiline text can be written as mutliple // lines, see an example in the implementation section.

A comment should always start with an upper case letter, and there should be a space after the opening

comment syntax.

Example:

//comment // Bad

3 /* This is single-line a comment */ // Bad

4

s // This is a single-line comment // Good

6

7

8

9

10

11

12

13

Vi
* This is a multiline

* comment, that spans three lines of
* text.

*/ // Good

// This is also a small

14 // mutliline comment, but this is allowed // Good

8.b. Class Comments

Each class should be described with a block preceding the class declaration, in accordance with the Doxygen
format (with @, not \, i.e. @brief instead of \brief).

Example:

Vi

* @brief Class for camera.

*

* This class represents a Camera in the 3D engine. A scene can be attached

* to a Camera. Only one scene can be attached to a Camera.
* A Camera can be attached to only one Render::View.

lugdunum_technical.pdf

July 12, 2017

30

Lugdunum Technical Documentation

- l

3D engine

7 */
s class LUG_GRAPHICS API Camera : public Node {
9 // ...

8.c. Function Comments

Same as classes, function declarations should be preceded with a block defining the function purpose, params,
and return values. The block is also in accordance with the Doxygen format (with @, not \, i.e. @brief instead
of \brief).

Example:

1 class LUG_GRAPHICS API Graphics {

2 /**

3 * @brief Initializes the application with the informations filled in @p initInfo
structure.

4 *

5 * @param[in] initInfo The initialize information.

6 *

7 * @return @ true if the initialization was successful.

8 v

9 bool init(const InitInfo& initInfo);

10 }

8.d. Variable Comments

Data member

Comments of members of struct, union, class, or enum should be written after the variable declaration, with
///< (in accordance to the Doxygen format) instead of the usual comment syntax.

Example:

1 struct foo {
2 int bar; ///< This is a data member comment.

3 };

The comment should describe, in less than one ling, the purpose of the data. This comment will be present in
the generated APl documentation.

However, no comment is needed if the type and name of the data member are self explanatory.

lugdunum_technical.pdf July 12,2017 31

-

-

Lugdunum Technical Documentation

- l

3D engine

Global variables

The comment style of global variables is the same as single-line comments, described in Comment Style.

8.e. Implementation Comments

If a block is tricky or too complicated to understand it by reading the code, a comment can be written before
it.

At Lugdunum, we prefer well written and readable code over over-commented, unreadable blocs of code.
For example, you should not comment trivial operations.

Example:

for (std::size t i = 0; i < renderQueue.getLightsNb(); ++i) {

// Blend constants are used as dst blend factor
// Now the depth buffer is filled, we can set the blend constants to 1 to enable blending
if (1 == 1) {
const float blendConstants[4] = {1.0f, 1.0f, 1.0f, 1.0f};
vkCmdSetBlendConstants(static cast<VkCommandBuffer>(cmdBuffer), blendConstants);

Trivial code:

// Increment i // Bad

i+=1;

The same applies for single lines, however, if you feel like you have to comment everything, maybe you should
rethink your code first ;)

Example:

// ALl the lights pipelines have the same renderPass
API::RenderPass* renderPass = pipelines[Light::Light::Type::Directional]->getRenderPass();

8.f. Punctuation, Spelling and Grammar
Comments should have good punctuation, spelling and grammar, like narrative texts.

Comments can sometimes be less formal, like for short comment describing a data member.

lugdunum_technical.pdf July 12,2017 32

[N

| _

- l

Lugdunum Technical Documentation

3D engine

8.g. TODO Comments

You should generally add a TODO comment before any code that is incomplete or needs review and or
particular attention. This allows temporary quircks and hacks to be grouped and easily searched (e.g. in an
IDE) in order to be correctly addressed before any merging is done to a definitive branch or version.

The name of the person who added such comment should appear inside parenthesis, right after the TODO. As
such, the person resonsible for the comment remains easily tracked and also accountable for the TODO.

Example:

// TODO(saveman71): replace opening file with something more global
std::ifstream shaderCode(file, std::ios::binary);

9. Formatting
9.a. Linelength
A line should not be more than 120 characters. This greately code enhance readability and prevents editor
auto-wrapping that usually isn’t smart enough to split the line(s) at the right position(s).
9.b. Non-ASCIl Characters

Although Non-ASCII characters should be rare, because applications should be localized externally, they must
use u8 prefix to ensure that the string literal uses UTF-8 encoding: ug8”aoée”.

Don't use charl6_t or char32 t because they are not for UTF-8 character storage. Don't use the Windows
type wchar_t, unless you are working with the Windows API in implementation specific files, or regions
delimited by preprocessor directives.

9.c. Spacesvs. Tabs
Never use tabs, only use spaces.
Indentation is only with 4 spaces, so configure your editor to correctly indent with 4 spaces.

9.d. Function Declarations and Definitions
The return type, function name and parameters should be on the same line.

Example:

void Node::lookAt(const Math::Vec3f& targetPosition) {
// ...

lugdunum_technical.pdf July 12,2017 33

Lugdunum Technical Documentation

- l

3D engine

If the line is longer than the maximum line length, you should write each parameter on one, separated line.
The last parameter has to contain the closing parenthesis and the opening bracket of the function’s scope.

Example:

1 void Node: :lookAt(

2 const Math::Vec3f& targetPosition, // 4 spaces indent
3 const Math::Vec3f& localDirectionVector,

4 const Math::Vec3f& up,

5 TransformSpace space) {

6 // ...

9.e. Lambda Expressions

Lambda expressions are to be formatted the same way as functions.
There is no space between the capture mode and the variable captured.

Example:

1 auto toUpper = [&foo](char c) {
2 return static cast<char>(toupper(c));

3 };

9.f. Function Calls
Splitting arguments in function calls should respect the same rules as in function declarations.

Example:

1 void main(int ac, char* av[]) {
2 // ...
3 callFooWhichIsALongFunctionAndTakesManyArguments (

4 andNo,

5 your,

6 functionNames,
7 should,

8 reallyNot,

9 beThatLong);
10 }

9.8. Braced Initializer List Format

Splitting arguments in braced initializer lists should respect the same rules as in function declarations except
that the closing curly brace should be on his own line.

lugdunum_technical.pdf July 12,2017 34

-

o

-

-

Lugdunum Technical Documentation

— |

3D engine

There is no space after the opening and the closing curly braces {}.

Examples:

VkDescriptorSetLayoutCreateInfo createInfo{
createInfo.sType = VK STRUCTURE_TYPE DESCRIPTOR SET LAYOUT CREATE_INFO,
createInfo.pNext = nullptr,
createInfo.flags = 0,
createInfo.bindingCount = bindingCount,
createInfo.pBindings = layoutBindings

J5

lug: :Graphics::Vulkan: :Image: :Extent extent = {width, height};

9.h. Conditionals

The conditions should have no spaces after the opening parenthesis (and before the closing parenthesis),
and there should be one space between the condition keyword and the opening parenthesis (.
The else keyword should be on the same line as the closing bracket } of the previous condition.

Example:

if (condition) {
// 4 spaces indent
7] coc

} else if (condition) {
I ooc

} else {
J0 oo

For short single-line conditions, it’s OK to put the condition on one line, but only if it improves readability:

if (!condition) return false; // 0Ok

If the short single-line condition is not on one line, you must wrap the body with curly braces:

if ('condition) // Bad

return false;

if ('condition) { // Good
return false;

lugdunum_technical.pdf July 12,2017 35

-

10

11

12

13

14

Lugdunum Technical Documentation

- l

3D engine

9.i. Loops and Switch Statements

As for conditions, you must always wrap the body for loops statements with curly braces, even if it’s only one
line long.

Example:

for (uint32 t i =0; i < 5; ++i) // Bad
std::cout << 1 << std::endl;

for (uint32 t i = 0; i < 5; ++i) { // Good
std::cout << i << std::endl;

Switch brackets {} follow the same rules as function brackets.
You should not use brackets {} around case keyword.

Example:

switch (enumVal) {
case VK SUCCESS: // 4 spaces indent
return "Success”; // 8 spaces indent
case VK _NOT_READY:
return "A fence or query has not yet completed”;

It's OK to put case on the same line if it enhances readability. However, all the cases should one line long, as
to keep consistency among each switch statement.

Example:

// Bad
switch (type) {
case Light::Type::Directional: return std::make unique<Light::Directional>(name);
case Light::Type::Point:
return std::make unique<Light::Point>(name);
case Light::Type::Spot: return std::make unique<Light::Spot>(name);

// Good

switch (type) {
case Light::Type::Directional: return std::make unique<Light::Directional>(name);
case Light::Type::Point: return std::make unique<Light::Point>(name);
case Light::Type::Spot: return std::make unique<Light::Spot>(name);

lugdunum_technical.pdf July 12,2017 36

-

N

-

, -
-— |

3D engine

9.j. Pointer and Reference Expressions

Lugdunum Technical Documentation

When declaring a pointer, the * should be placed on the type, i.e. there is no space before the * or &.

Example:

int foo;
int* bar; // Good
int * x; // Bad

bar = &foo;

9.k. Boolean Expressions

Spaces around boolean operators are obligatory.

If a boolean expression is longer than the maximum line length, you should write each expression on separate

lines, with the boolean operators at the end of each lines.

Example:

if (! pipelines[Light::Type::Directional] ||

! pipelines[Light::Type::Point] || // 4 spaces indent

! pipelines[Light::Type::Spot]) {
I coc

9.. Return Values

The use of parenthesis around the return value is disallowed:

return (5); // Bad
return 5; // Good

The only exception is for complex expressions:

return (longExpressionA &&
longExpressionB) ;

9.m. Variable and Array Initialization

Prefer using {} than ().
There is no spaces around and inside the {} or ().

Example:

lugdunum_technical.pdf July 12,2017

37

Lugdunum Technical Documentation

- l

3D engine

1 int foo(5); // Good
2 int foo{5}; // Better

9.n. Preprocessor Directives
Preprocessor directives follow a separate intentation scheme:

e Each preprocessor directive starts with a # on the first character of the line

e Nested conditions should have their content indented with one and only space per indent level.

e Again, preprocessor directive are not dependent on the indentation of the code they currently are
located, and in the same way, indentation of code located inside preprocessor directives should not be
disturbed.

A good way to remember this is that final, preprocessed code, should have the correct indentation.

1 int main(int ac, char* av[]) {
2 uintl6 t foo = 21;

3

4+ #1T defined(MACRO_A)

5 if (ac > 2) {

6 // Code run only if macro A
7 foo += 21;

g # if defined (MACRO B)

9 // Code run only if macro A and macro B
10 foo -= 42;

11 # endif

12 }

13 #endif

14

15 return foo;

16 }

9.0. Constructor Initializer Lists

If the constructor line is longer than the maximum line length, all the code after : should be written to a new
line.

Example:

1 Camera::Camera(const std::string& name) : Node(name) { // Short constructor
2 // ...

lugdunum_technical.pdf July 12,2017 38

l

|

Lugdunum Technical Documentation

3D engine

Image::Image(VkImage image, const Device* device, const Extent& extent, bool swapchainImage,

VkImageAspectFlags aspect)

_image(image), device(device), swapchainImage(swapchainImage), aspect(aspect), _extent

(extent) { // Long constructor, 4 spaces

7 coc

9.p. Vertical Whitespace

Try to limit the use of blank lines, but you can use them sparsely to split logically independant code sections

and help readability.

Each file should end with a new line (\n).

10. Conclusion

This style guideline is quite complete, but still missing some details. If you find an edge-case that this guideline

does not cover, feel free to report any issue or contribute to this guideline.

As a general rule of thumb, your code should be the most readable possible, and it is always possible to flex

some rules, if it makes your code better.

Good luck, have fun coding with us!

Contributing to Lugdunum

1. Branching strategy

In order to have an efficient workflow, we chose to create different branches, each with its own responsability:

master: the master branch points to the latest stable release of the 3D engine. It is protected, which
means that only trusted contributors can accept a pull-request to this branch. This branch guaranteed
(up to a certain level) to be stable, and this is the only branch officially supported.

hotfix: this branch is dedicated to urgent bug fixes of the master branch. Emergency fixes will be
commited to this branch directly, and a pull-request will be opened to allow a really quick code-review
before pushing the changeset to master.

release: this branch contains changes that one day will reside on master. They are present to allow
users to test out new functionnality before it is officially supported and bug-free.

dev: this is the unstable, working branch. Changes on this branch may not be quite stable yet, and
they might not work correctly on every platform. Once dev is sufficiantly stable, it will be merged onto
release (or cherry-picked).

feature—sx: these branches are feature branches, usually used by one or more developers working on
a new feature. Pull-requests from these branch must be opened onto dev only.

lugdunum_technical.pdf July 12,2017 39

Lugdunum Technical Documentation

- l

3D engine

An example is show in Figure 1.7, to demonstrate the utility of each branch, with a real-world scenario.
This branching strategy is applicable across all Lugdunum’s projects and must be respected. As such, the
branches master and dev are protected on Github, which means that only administrators have push access to

these branches, and that pull-requests with complete, passing tests must be opened in order to have changes
implemented in these branches.

lugdunum_technical.pdf July 12,2017 40

—

—

Lugdunum Technical Documentation

e,

3D engine

Fix a major bug
of master

feature-*

Feature for a
future release

Hotfix is also
merged onto
dev

Start of the 0.3
,/| release (RC)

At this point,
the next
v release will be

C) after 0.3

1 Only bug fixes

Bug fixes will also be
v merged onto dev

Figure 1.7: Brancing strategy

lugdunum_technical.pdf July 12,2017 41

Lugdunum Technical Documentation

-— l

3D engine

IV. Testing architecture
Each commit pushed on each branch is compiled and tested by CircleCI* and AppVeyor?.

You are encouraged to write tests for your code. Broken build will not be allowed in any case in a pull-request,
so be careful!

1. Introduction

All our sensible code is covered by unit tests. We use the Google-Test® framework which is considered as a
third party module of our project. It is bound with Google-Mock®.

All the written tests can be found in the test folder of the Lugdunum’s repository® in the dev branch.

All the tests included in the folder test are executed when you run the tests with cmake, and are executed as
well in CircleCl.
2. How to add new tests

If you want to add your tests, we recommend you to create a new folder in the test folder and put all your
*.cpp init. The structure of a test file should be like following :

1 #include <gtest/gtest.h>

3 TEST(myTestPool, myTest) {

4 bool toto = true;
5 EXPECT EQ(toto, true);
6 }

To be compiled with other tests, each tests directory should have a CMakelists.txt. In a Math directory, this
file will have the following format:

1 # Tests directory path
2 set(SRC_ROOT ${PROJECT SOURCE _DIR}/Math)

4+ # Define *.cpp tests

5 set(SRC

6 ${SRC_ROOT}/Geometry/Transform.cpp
7 ${SRC_ROOT}/Matrix2x2.cpp

8 ${SRC_ROOT}/Matrix3x3.cpp

CircleCl: https://circleci.com/gh/Lugdunum3D/Lugdunum

2AppVeyor: https://ci.appveyor.com/project/Lugdunum/lugdunum

3Google-Test: https://github.com/google/googletest/tree/master/googletest
4GoogIe-Mock:https://github.com/google/googletest/tree/master/googlemock
>Lugdunum’s repository: https://github.com/Lugdunum3D/Lugdunum/tree/dev/test

lugdunum_technical.pdf July 12,2017 42

https://circleci.com/gh/Lugdunum3D/Lugdunum
https://ci.appveyor.com/project/Lugdunum/lugdunum
https://github.com/google/googletest/tree/master/googletest
https://github.com/google/googletest/tree/master/googlemock
https://github.com/Lugdunum3D/Lugdunum/tree/dev/test
https://circleci.com/gh/Lugdunum3D/Lugdunum
https://ci.appveyor.com/project/Lugdunum/lugdunum
https://github.com/google/googletest/tree/master/googletest
https://github.com/google/googletest/tree/master/googlemock
https://github.com/Lugdunum3D/Lugdunum/tree/dev/test

9

10

11

12

13

14

15

16

17

18

Lugdunum Technical Documentation

- l

3D engine

${SRC_ROOT}/Matrix4x4.cpp
${SRC_ROOT}/Quaternion.cpp

)

source _group(”src” FILES ${SRC})

Add tests to compilation
lug add test(Math
SOURCES ${SRC}
DEPENDS lug-math

Note: source group on line 12 is a special CMake directive used for grouping source files in IDE project
generation, for example groups in Visual Studio. More information is available on the official CMake docu-
mentation®.

3. Build tests

When using CMake, you need to add the command line argument —DBUILD TESTS.
It will create one project for each test directory. In the previous example, it will create a runMathUnitTests
project.

V. Contactus

The development team is available through a wide range of channels if you want to reach out to us:

1. Github

You can find our repositories on Github, at Lugdunum3D’, and report specific problems or questions directly
by filing a new issue.

2. Mailing list

If you want to write us an email, you can totally do so at Lugdunum 2018@labeip.epitech.eu.

5on the official CMake documentation: https://cmake.org/cmake/help/v3.0/command/source group.html
7Lugdunum3D: https://github.com/Lugdunum3D

lugdunum_technical.pdf July 12,2017 43

https://cmake.org/cmake/help/v3.0/command/source_group.html
https://cmake.org/cmake/help/v3.0/command/source_group.html
https://github.com/Lugdunum3D
mailto:lugdunum_2018@labeip.epitech.eu
https://cmake.org/cmake/help/v3.0/command/source_group.html
https://github.com/Lugdunum3D

' | Lugdunum Technical Documentation

3D engine

Part. 2

Lugbench

Contents

1. Homepage 44
2. Project architecture 44
APl documentation 44
1. List of endpoints 44
2. RESPONSE COABS 44
. Unittests . 45

lugdunum_technical.pdf July 12,2017

Lugdunum Technical Documentation

- l

3D engine

1. Homepage

The homepage is located at http://lugbench url/gpus.

2. Project architecture

2.a. Configuration

The project contains some configuration files.
Here is the list.

Files Description

package.json The definition of dependencies, used by npm when installing the project.
gulpfile.js Configuration of different Gulp tasks.

tsconfig.json TypeScript configuration file.

tslint.json TypeScript linter configuration file.

conf/*js Configuration of additional modules used by the project.

2.b. Sources

All the sources files are located in the src folder.
The initialization page is located at the root of this src folder.
Then, all the components and models are located in the src/app folder.

. APl documentation

1. List of endpoints

Method Route Description

GET /api/vl/gpus Returns all GPUs present in the database.

GET /api/vl/gpus/:id Returns the GPU with the id “:id” if present in the database.
PUT /api/vl/gpus Add or edit a GPU if present in the database.

Note: The details of the object to pass in the payload is available online on the API's repository®.

The object has to be formatted in json.

2. Response codes

Here is the response codes returned by the back-end.

Lonline on the API’s repository: https://github.com/Lugdunum3D/LugBench-API/blob/dev/v1l/models/gpu/index.js

lugdunum_technical.pdf July 12,2017 45

https://github.com/Lugdunum3D/LugBench-API/blob/dev/v1/models/gpu/index.js
https://github.com/Lugdunum3D/LugBench-API/blob/dev/v1/models/gpu/index.js

- l

3D engine

Lugdunum Technical Documentation

Response code

Description

200
201
400
500

Success - Request returned without any problem.
Creation success - Object inserted in the database without any problem.
Bad request - Some headers or fields are missing.
Server error - Please open an issue or contact us.

Il. Unit tests

Our APl is covered by unit tests. We will use Mocha?, a feature-rich JavaScript testing framework running on

Node.js.

All creation and retrieving of data are tested.

?Mocha: https://mochajs.org/

lugdunum_technical.pdf July 12,2017 46

https://mochajs.org/
https://mochajs.org/

	Lugdunum
	Architecture of Lugdunum
	Renderer Architecture
	Sequence diagrams
	Vulkan Rendering

	Code Guidlelines and Style
	Header files
	Scoping
	Classes
	Functions
	Other
	Others C++ Features
	Naming
	Comments
	Formatting
	Conclusion

	Contributing to Lugdunum
	Branching strategy

	Testing architecture
	Introduction
	How to add new tests
	Build tests

	Contact us
	Github
	Mailing list

	Lugbench
	Homepage
	Project architecture

	API documentation
	List of endpoints
	Response codes

	Unit tests

